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One of the important factors limiting the possibility of obtaining narrow high-current 
beams is the relatively low current density obtainable from the emitter. ~Cnen the emitting 
surface is increased to achieve larger values of the total beam current under conditions en- 
suring complete charge compensation, pinching by external fields may turn out to be the only 
means of obtaining narrow high-current electron beams. The theoretical description of a 
high-current beam is complicated by the necessity of taking account of the self-magnetic 
field, which may be larger than the external focusing fields. This complexity can be over- 
come by constructing rather simple models which take account of the interaction of the beam 
particles with the self-field. 

Let us consider a steady axisymmetric relativistic electron beam when the transverse 
motion of the particles can be separated from the longitudinal, i.e. $ i < i/yo, Yo = (i -- 
~)-~/2 Thebeam current is assumedmuch smaller than theAlfv~n critical value (Bz ~ ~o). The 
electron distribution function can be written in the form F e = ~(Bz ~ ~o)f(r, z,va ). For f 
we have the equation 

al o/ .(2 2~J#o ~ d~z ) ol 
C~0 W ~-V• 0 - ~ - -  mer l+- -r , ca  2 _ +[VaOS] +-~-r--~--z [v.-r• 0-~=0,  (i) 

where Bz = Vz/C, Vz is the axial component of the electron velocity, c is the speed of light, 
2 = (2~e2/my) (n i -- ne/Y2 ) e and m are the charge and mass y is the relativistic factor, w e 

of the electron, n i and n e are the ion and electron densities in the beam (for a neutral 
beam n i = n e and ~ = 2eJSo/ymcR2), J is the beam current, R(z) is the radius of the beam, 
mH =eH/ymc' where H is the external magnetic field (H =e z H z(z)), Jo is the external current 
uniformly distributed over a cross section of radius a and flowing along the axis of the 
beam (a R(z)). 

An uncharged beam can be focused only by magnetic fields, and two configurations must 
be distinguished: the magnetic field of the external current, which has only an angular 
component H~, and the field of the solenoid H = Hz(z)o The density of the beam electrons is 
assumed constant over the cross section. 

It is convenient to rewrite Eq. (i) in the following variables: v r -- the radial component 
of velocity, H -- the moment of the transverse velocity with respect to the beam axis, and r, 

-- the distance from the axis and the angle in the r~ plane. The result has the form 

C~O ~z  + vr ~ - [ - ' 7  + r a Ov r av r OM 
M O/ ) Clio af o , 
7 a~ 2 aM r - ~ ~  (2) 

(0~- 2eJ~~ 2eY~176 
~mcB2 + ?mc~2" 

Equation (2) is equivalent to the system 

dz dr r~dq~ dv~ 
C~o v r M M 2 Mo) H 

,.--~ - o ) ~  + 1" 

dM 
I o r ' 

~nrV r + y r'c~o~~ 

from which we have 
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d2r t (M ~ ~) dM dr i ,,dE~ 
dz ~ - -  (cl3o)2 - 7  - -  r176 + ' ~ = - -  r176163 - -  -:2 r" dz " 

From the last equation we can obtain 

M(z) = M 0 -- (0ur2/2, 

from which we then have for r" 

~0 ~ - 

(cl3o) ~r" M~ ro)~(r), '=o)~+ u ---- 7-- m2 4 " (3) 

Equation (3) has an invariant of the form 

(( A' ,2. M~o \ E~r 2 
I = A ( z )  r ' - - , - - ~ - r )  + ~ ) +  A ( z ) '  ( 4 )  

where Eo is a constant whose meaning will become clear later, and A(z) satisfies the equation 

A" ~ (z) A '~ /~o2 
2A- - -  c2~---T ~- ~ ~- A-~" (5)  

I t  c a n  be  shown by  d i r e c t  s u b s t i t u t i o n  t h a t  I g i v e n  by  (4)  s a t i s f i e s  Eq. ( 2 ) .  C o n s e -  
q u e n t l y  ~(I), where ~ is an arbitrary function, will also satisfy this equation. 

We set ~(I) =~(I- Io). Then 

~ dM 8 ( I - - 1 o ) =  ax i o ( R - - r ) ,  ne = U  8 ( I - -  Io) d v t  = • dr, . -  7 -  (Cl3o)Z A (6) 

0, X < 0 ,  
(r(X)= 1, X > 0 ;  

I o 
n 2 (z) = ~ A Cz). (7) 

It is clear from these relations that R(z) is the radius of the beam. 

Substituting the expression for A(z) from (7) into (4), we have 

r~ Eo 2 vr ~ n L" 

= + To j- (8) 

2 2 2 2 
It follows from this equation that if r = R, (Vr/C~o -- R') 2 + Mo/c ~oR = 0; i.e., an 

electron at the edge of the beam has a moment Mo = 0 and a velocity v r = c~oR'; in the ab- 
sence of a magnetic field only those particles which intersect the axis reach the edges of 

the beam. 

The boundary conditions at the beam entrance (z = 0) can also be found from Eq. (8). 

Setting R'(0) = 0, we have 

v~ -]- const r 2 = const R 2 (const > 0), 

i.e. the perpendicular component of the velocity of the particles must be maximum on the axis 
of the beam and vanish at its edge. We note that vx and credo not generally have the same 
direction. The random character of the direction of v~ can be interpreted as the presence 
in the beam of a transverse "temperature" which varies over the cross section from a maximum 
on the axis to zero at the edge of the beam. This last remark clearly shows the model 
character of the description of the beam being considered. 

From (5) and (6) we have the equation for the radius 
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2eJ~o I ~_ 2edo~o_______~ R e~H 2 I~ O. (9) 
(C~o) 2 R"  ~ Y me ~ 7 inca2 + 4 (7,nc) ~ R E~R~ = 

Equations of the type (9) were derived earlier in a number of papers [i-3]. Kapchin- 
skii [i] gave the derivation closest to ours by using a microcanonical distribution. Poukey 
and Toepfer [2] give a hydrodynamic derivation. By averaging over the particles Cooper et 
al. [3, 4] derived "mean-square" equations similar to (9). In all these papers a coefficient 

2 2 corresponding to Io/Eo in (9) is interpreted as the emittance of the beam, i.e., the phase 
volume in the transverse coordinates r and r'. 

It is clear from (9) that focusing an axisyn~etric beam by a longitudinal current is 
equivalent to focusing by a longitudinal magnetic field, since the third and fourth terms in 
this equation have the same linear dependence on R. The equivalence relation can be written 
in the form Heq = 8Jogoymc/ea 2. We note that the term with the magnetic field enters every- 
where with a positive sign (%e2H2), whereas the longitudinal current, directed opposite to 
the beam current, has a demagnetizing character, which is important, as we shall see later, 
for a "narrow" pinch. 

The problem of focusing, or more accurately, the pinching of a high-current relativistic 
electron beam was treated, for example, by Poukey et al. [2, 5]. In the case studied in [2] 
when i = 2eJ/ymc3~o > 1 it was necessary to use very complicated methods for describing the 
beam, and to make extensive use of numerical calculations. The case i < 1 was treated in 
[5], but in our opinion certain aspects of the pinching of a neutralized beam with a current 
smaller than the Alfv~n critical value remain obscure. 

It is convenient to rewrite Eq. (9) for the radius of the beam in the form 

where 

ioR ~a; = O, (10) 
B" u- --ff a~ R3 

i ~ .  2eJ .' 2edo 2 I~ 
----; ~0=--" B0-- " H = 0 ;  
?mc~o ?mc~t~o ' iE~ ' 

Ro is the equilibrium radius of the beam in the absence of external fields. If i~ ~---0, the 
phase trajectories of the beam in the coordinates R and R' surround the point R' = 0, R = Ro 
(Fig. i) (R'2/2 + iln(R/Ro) + (i/2)(R~/R 2) = c~). 

The character of the quantity Ro can also be illustrated in the following way. Let us 
assume that the beam enters the space beyond the anode through a foil. In this case the beam 
particles, laminar before striking the foil, collide with atoms and are scattered through a 
certain angle e 2, and the directions of the velocities vm acquired as a result of passing 
through the foil have a random character. If the radius of the beam is R, close to the foil, 
Ro is estimated from ~2R~ ~iR~. The value of Ro plays an important role in investigating 
the pinching of a beam. 

Let us consider focusing by a longitudinal current flowing in the same direction as the 
beam current, where i~(z) is an increasing function. If i~(z) varies sufficiently slowly, 
Eq. (9) admits a solution with R" ~ 0. 

In this case we have 

R' 

Fig. i 
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This relation can be confirmed by substituting into (i0) if dig(z)/dz § 0. If in addition 
ig/i > a2/4Rl, 

i ~ 1/z 
R '  ~ aR~ t-~o ] " (11) 

Estimate (ii) shows that the external current has an extremely small effect on the 
pinching of the beam: To decrease the radius by a factor of i0 requires an external current 
about l0 4 times larger than the beam current. We call pinching of this type "broad." The 

amplitude of transverse oscillations of the beam is choked by the external field, and the 
frequency of oscillations increases. 

After the external current is turned off the beam is characterized by the phase tra- 
jectories of Fig. 1 which show that pinching can be completely irreversible only to R = Ro, 
since in focusing to R < Ro the values of R for the beam trajectory are generally larger than 
Ro. This fact characterizes the fundamental role of the quantity Ro and continues to hold 
for any method of focusing. 

We set io = --i~_____ const, and a = R,, where R, is the initial radius of the beam. 

(i0) then takes the form 

i ioR iR~ ~ O. (12) 
R" ~ R Rz R ~ 

Equation 

We call pinching described by Eq. (12) (for io-------const > 0) "narrow." We note here the 

impossibility of "narrow" pinching by a magnetic field, since the sign of the equivalent 
external current can only be positive, 

Since io is constant, Eq. (12) has an integral of the form 

R ,2 R ,  -~- i In R ,  i o R ~ i - r =  2 i + T \ R ;  . ) '  (13) 

where R$ is the initial value of the derivative of the radius of the beam. 

(13) that 

= + 

It follows from 

i.e., two extrema are possible for the phase curve R'(R): 

1,~ = ~ o R ,  • \ 2i ~ / io -~o~,, 
(14) 

which is possible only for focusing by a countercurrent; for the opposite sign of the exter- 

nal current one of the solutions for the square of the radius would be negative. 

The following types of phase trajectories are possible for Eq. (12) (Fig. 2): curve I 
when there are two different roots of Eq. (14) and R'2(R2) > 0; curve II when there are two 
roots and R'2(R2) < 0 and R '2 (RI) > 0; curve III when there are no real roots of Eq. (14); 

curve IV describes the situation for equal roots of Eq. (14), i.e. when 

~ I  ~ 4i~ 2 
-T-Ro. (15) 

Curves I and IV describe irreversible focusing when the minimum at R = R2 is tangent to the 
straight line R' = 0. The best pinching, i.e., the smallest value of R2, can be obtained for 
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Fig. 2 

J 
R' 

R 

Fig. 3 

equal roots RI = R2, and therefore we consider case IV first. 

Then 

i ~ 2 R ] .  R I  = = R ,  = (i6) 

It follows from this that the ratio of the radii for maximum pinching is 

R; i 

R ~ 2i o 
(17) 

and the effect is possible only When 2io > i. 

Substituting (16) into (13), we obtain for R' = 0 

= i In + i o 4i o. (18) 

For given values of i and io Eq. (18) determines the initial angle of convergence of the beam. 
For the model under consideration to be valid the condition R <<i must be satisfied, and 
this together with (18) places a restriction on the currents 

i i ~ 
i >> i l n ~ F  ~ -F io - - ~ T o >  O. (19)  

The irreversible character of the focusing considered is explained by the divergence of the 
integral for the length Z at which the point R' = 0 is reached. 

We have from (13) 

Z = - - :  d i l n R  ~ ' +  2 R~ 2 /(~" 

It is clear that this integral diverges as R § RI; 

- 1 ,  

If the initial conditions for curve IV correspond to (18) (Fig. 3 shows the phase 
trajectories in the neighborhood of the fundamental trajectory) the focusing countercurrent 
can be broken off arbitrarily far away. Under real conditions, however, such a situation is 
unattainable; because of tbe unavoidable spread in R' the initial states lie in a region 
having a finite phase volume. Any trajectory arbitrarily close to the fundamental corre- 
sponds to a finite length Z at which the point R' = 0 is reached; after this the beam again 
begins to spread. The finite value of the integral for Z along neighboring trajectories is 

accounted for by the presence of the infinite derivative dR'/dR RCRi. 

R ~ O  
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We show that under certain conditions irreversible pinching can occur as the result of 
suddenly stopping the extcrn~! current. 

W_e set R '= = R~ = + S(R) (cf. 13)) and determi_ne R so that R~ 2 + S(R--) = 0. 

that R is only slightly different from Rz, i.e., R = Rx(l + x) with x<<l. 
We assume 

We determine the distance Zo at which the current is stopped in the following way: 

zo = - dR (20) 

Since the main contribution to the integral (20) comes from points near R ~ Ro, we ex- 
pand the radicand and obtain 

']/1 ( 2i0 "~ 1/~. (21) 

Zo=7 70; t T )  �9 

If the initial value of R~ differs from the value satisfying the equality R '2 + S(Ro) = 
0, in the plane Z = Zo where the countercurrent is stopped the radius of the bea~ differs 
from Ro. Assuming R = R~(I + x) and ~ = R~(I + y), we have 

R. ~s(R)--s(N) = ~  -- _~r (22) 

A comparison of (21) and (22) gives 

y = x + - T o )  (23) 

Equation (23) shows that there is a range of initial values for which the values of the 
radius in the plane where the countercurrent is stopped are negligibly different from RI. In 
this case the stable region is compressed as Xo § 0, i.e., as the phase trajectory approaches 
the principal trajectory. 

The irreversibility of pinching (the absence of an appreciable increase in the radius 
after the countercurrent is stopped) is accounted for by the fact that RI > Ro and the phase 
trajectory of the free beam has to surround the point R' = O, R = Ro (Fig. 3). 

It is clear from Eq. (17) that the larger the countercurrent io the larger the pinch 
effect. The ratio of the current density of the beam after pinching jl and before pinching 

j, is 

]1~, = 2io/i. 

S i n c e  (19 )  s h o w s  t h a t  t h e  maximum v a l u e  o f  t h e  c o u n t e r c u r r e n t  i o  % l ,  i t  f o l l o w s  t h a t  

]i/]. ~'~ 2/i, (24) 

i.e. pinching is possible only for weak-current beams (J<<17yB kA). 

There is also another method of producing irreversible pinching when the countercurrent 

is suddenly stopped. 

Equation (13) shows that a phase trajectory can pass through the point R' = 0, R = Ro. 
The initial conditions in this case must satisfy the relation 

R0 ,§ 
-~- = i in ~. i--~-- I R~ 7 (25) 
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The distance L from the emitter at which the radius has its minimum value R = Re is 
found from the integral 

R 

L = - -  ~ dR 

i ln-~- @2-'~. -+--~ ! R2 * ] 

If the countercurrent is suddenly stopped at the distance L~ the radius of the beam for 
z > L will clearly not change, since the phase trajectory of the neutralized beam degenerates 
into the point R = Re, R' = 0. The stability of such a pinch is obvious, since for small 
deviations from this point after the countercurrent is stopped, the beam is described by a 
phase trajectory of correspondingly small size~. 

In addition to condition (25), however, the condition R'2(R~) > 0 must also be satisfied, 
since otherwise the phase curve is doubly-connected (type II of Fig. 2) and the points corre- 
sponding to the initial conditions and the equilibrium radius lie on different branches of the 
phase curve. 

�9 2 2 2 
Using the notation 5 = 41oRo/iR,, R~ = (2R~/~) (i + ~-- 5) and the condition R~ 2 > 0 

from (13), Eq. (25) can be written in the form 

m 2 (~ + V~-~)~ + T8 ~-2 (1 + r ~ )  - ~ + ~ 2 (t + V ~ - ~ )  > o, 

which after simple transformations reduces to 

In 5 
2 (t + V l  - ~ )  

5 
4 {- I q- I / t - - 5 > 0 .  

This inequality is satisfied in the range 1 > 5 > 0 if 

5>6,20.86. 

2 2 
In other words, in addition to (25) the condition 4ioRo/iR, > 5, must also be satisfied. 
This significantly restricts the range of initial conditions for which irreversible pinching 
is possible. 

The ratio of the current densities of the beam after and before pinching satisfies the 
inequality 

]1/], < 6 ,  4i._.~. o " (26) 
t 

E q u a t i o n  (26) does  n o t  d i f f e r  q u a l i t a t i v e l y  f rom (2 4 ) ;  i n  b o t h  c a s e s  p i n c h i n g  i s  p o s s i b l e  f o r  
r e l a t i v e l y  w e a k - c u r r e n t  beams; i n  t he  p l a n e  in  which  t h e  c o u n t e r c u r r e n t  i s  s t o p p e d  the  max i -  
mum c u r r e n t  d e n s i t y  o f  the  beam i s  a p p r o x i m a t e l y  e q u a l  to  the  d e n s i t y  o f  the  c o u n t e r c u r r e n t .  
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